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Abstract: Measurements are reported of the effects of 0-23 mT applied magnetic fields on the spin-
selective recombination of Py•- and DMA•+ radicals formed in the photochemical reaction of pyrene and
N,N-dimethylaniline. Singlet T triplet interconversion in [Py•- DMA•+] radical pairs is probed by investigating
combinations of fully protonated and fully deuterated reaction partners. Qualitatively, the experimental B1/2

values for the four isotopomeric radical pairs agree with predictions based on the Weller equation using
known hyperfine coupling constants. The amplitude of the “low field effect” (LFE) correlates well with the
ratio of effective hyperfine couplings, 〈aDMA〉/〈aPy〉. An efficient method is introduced for calculating the spin
evolution of [Py•- DMA•+] radical pairs containing a total of 18 spin-1/2 and spin-1 magnetic nuclei. Quantitative
analysis of the magnetic field effects to obtain the radical re-encounter probability distribution f (t )sa highly
ill-posed and underdetermined problemsis achieved by means of Tikhonov and maximum entropy
regularization methods. The resulting f (t ) functions are very similar for the four isotopomeric radical pairs
and have significant amplitude between 2 and 10 ns after the creation of the geminate radical pair. This
interval reflects the time scale of re-encounters that are crucial for generating the magnetic field effect.
Computer simulations of generalized radical pairs containing six spin-1/2 nuclei show that Weller’s equation
holds approximately only when the radical pair recombination rate is comparable to the two effective hyperfine
couplings and that a substantial LFE requires, but is not guaranteed by, the condition that the two effective
hyperfine couplings differ by more than a factor of 5. In contrast, for very slow recombination, essentially
any radical pair should show a significant LFE.

1. Introduction

Magnetic fields can alter the rates and yields of chemical
reactions that proceed via spin-correlated radical pair intermedi-
ates and so provide information on the structures, dynamics,
kinetics, and reactivity of free radicals.1-3 Chemical magneto-
sensitivity via the radical pair mechanism (RPM) requires the
following sequence of events: first, creation of a pair of radicals,
with correlated electron spins, in a pure singlet (S) or pure triplet
(T) state; second, coherent evolution of the radical pair between
the near-degenerate S and T spin states; and third, reaction of
the S and T radical pairs to form different products (or the same
product at different rates). It is during the second of these steps
that the magnetic field acts, via the electron Zeeman interaction,
altering the extent and frequency of ST T interconversion and
hence the relative yields of reaction products and/or the lifetime
of the radical pair. RPM magnetic field effects are thus kinetic,
rather than thermodynamic, in origin and may be detected for

magnetic fields whose Zeeman energies are much smaller than
the average thermal energy per molecule,kBT.

As the only well-established mechanism by which low-energy
electromagnetic radiation can affect chemical processes, the
RPM has featured in debates on the possible adverse health
effects of the very weak fields emitted by electrical equipment
and power transmission lines4-6 and has been proposed as a
mechanism for the magnetic compass sense of migratory birds.7,8

In both cases, the magnetic fields involved are weaker than
1 mT such that, for typical organic free radicals, the magnetic
electron-nuclear hyperfine interactions in the radical pair are
larger than the electron Zeeman interactions. Such systems may
demonstrate a “low field effect”9-16 (LFE), which leads to a
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decrease in the fraction of singlet-born radical pairs that
recombine via the S state (and, conversely, an increase for
triplet-born pairs). When present, the LFE dominates the
response to applied magnetic fields that are weaker than the
hyperfine interactions.

There have been several attempts to predict the circumstances
in which an LFE may be expected.10,13,17The LFE is character-
ized by two key parameters (stated here for a singlet-born
radical pair): the strength of the applied magnetic field at which
the yield of the product formed from the S state of the radical
pair (the “S-product”) is at a minimumsthe “low field
position”sand the extent of the decrease in S-product yield at
this low field position compared to that without a magnetic
fieldsthe “low field depth”. On the one hand, theory predicts
that, for very slow recombination reactions, essentially any
radical pair can be expected to show a significant LFE
irrespective of the hyperfine couplings, and their distribution,
in the radicals.10,17 However, experimental observations and
other theoretical approaches13 suggest that the LFE is weak
unless one, but not both, of the radicals has a small effective
hyperfine interaction. The two predictions rely on different
assumptions about the nature of the recombination kinetics in
the radical pair and are thus not necessarily mutually incompat-
ible. In studies of free radical reactions and in the more exotic
contexts of health hazards and animal magnetoreception, it is
important to understand how the two parameters depend on the
chemical and magnetic properties of the radicals and which, if
either, of the two limiting cases mentioned above holds in any
given situation. These questions, among others, are addressed
here.

As the magnetic field strength is increased, the LFE gradually
gives way to the “conventional” magnetic field effect (MFE)
on the relative product yields and/or radical pair lifetime. This
change occurs as the Zeeman interaction energy increases and
comes to dominate the hyperfine interactions; it can be
understood in terms of the detailed interplay of the two types
of magnetic interaction and their effects on ST T intercon-

version.1,10 The MFE has a phase that is opposite to that of the
LFE, i.e., an increase in S-product yield for a singlet-born radical
pair. The characteristics of both LFE and MFE also depend on
the relative translational motion of the radicals in solution. At
the instant of their creation, the two radicals that comprise a
geminate pair are usually sufficiently close to one another that
their mutual exchange interaction is large enough to lock the
pair into its initial S or T state. Only when the radicals have
separated to a point where the exchange is comparable to the
hyperfine and Zeeman interactions (typically 1.0-1.5 nm), can
S T T interconversion start. For the magnetic field to affect
the product yield, the radicals have then to diffuse back together
(“re-encounter”) in order to be able to recombine in a spin-
selective fashion, usually from the S state. In this respect, the
origin of magnetic field effects parallels that of chemically
induced dynamic electron and nuclear polarization, CIDEP and
CIDNP, which also require a period of exchange-free ST T
interconversion prior to a diffusive re-encounter.18-23 A simple
way of modeling these trajectories is in terms of a re-encounter
probability distributionf(t),20,24 as described below.

Traditionally, two approaches have been taken to quantify
MFE data. One is based on the observation that most MFE
responses are approximately sigmoidal. The principal variation
observed for different radical pairs may therefore be quantified
by measuring the zero-field and high-field (saturation) values
of the product yield and hence the magnetic field strength,B1/2,
corresponding to a product yield mid-way between these
limits.25-27 The other approach involves model-fitting computer
simulations of the magnetic field response using a set of
magnetic interaction parameters (g-values, hyperfine couplings,
etc.) and a model for the diffusive motion of the radicals. This
procedure is most successful when the majority of the param-
eters in the model are independently known, e.g.,g-values and
hyperfine coupling constants from EPR or ENDOR spectra or
from ab initio calculations.

To determine more clearly the roles played by spin-dynamics
and diffusional motion, we have measured the effect of an
applied magnetic field on the radical ion pair [Py•- DMA •+]
formed in the photochemical reaction of pyrene (Py) withN,N-
dimethylaniline (DMA) in a viscous solvent. The exciplex
fluorescence produced by this reaction is strong and allows
sensitive measurements of the S-product yield.28,29 To allow
reliable separation of spin and motion effects, data have been
recorded for combinations of fully protonated or fully deuterated
reactants (Py-h10, Py-d10, DMA-h11, DMA-d11) to obtain four
isotopomeric radical pairs. It seems reasonable to suppose that
deuteration has little effect on the diffusive motion of the radicals
or on their reactivity but that it will dramatically alter the
hyperfine interactions and thus the ST T interconversion,
principally via the 6.5-fold difference in the magnetic moments
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Scheme 1. Essential Steps in the Photoinduced Reaction of
Pyrene and N,N-Dimethylaniline via the Radical Pair State [Py•-

DMA•+] which is Responsible for the Magnetic Field Sensitivity of
the Exciplex Fluorescence
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of 1H and 2H nuclei. A novel approach is introduced for
interpreting the LFE and MFE data in such a reaction system.
Using Tikhonov and maximum entropy regularization tech-
niques, we show that it is possible to extract anempirical re-
encounter probability distribution function for each isotopomeric
radical pair directly from the experimental data.

2. Experimental Methods

A simplified reaction scheme for the photoinduced electron-transfer
reaction between Py and DMA is shown in Scheme 1. Both S and T
pairs can diffuse out of the geminate solvent cage to form free radicals,
but only S pairs can recombine to produce a fluorescent exciplex. An
applied magnetic field modifies the ST T interconversion, alters the
fraction of radical pairs that form exciplexes, and hence changes the
fluorescence intensity.

Singlet [Py•- DMA •+] radical ion pairs were generated by continuous
UV irradiation using a 300 W Xe arc lamp (Oriel 66011) with a power
supply (Oriel 68811) which delivered approximately constant light
intensity across the 300-800 nm range. The light was passed through
a water filter to remove the infrared components, through a UV short-
pass filter (Andover 345FG01-50; 50% cutoff at 345 nm) and then
directed to the sample via a liquid-filled light guide. The fluorescence
was collected at 90° to the incident beam, filtered (548 nm filter; 100
nm bandwidth), and transmitted via a light guide to a photomultiplier
tube (Hamamatsu R928 mounted on a Hamamatsu C6271 high voltage
power supply unit). A variable resistor allowed manual adjustment of
the bias voltage across the photomultiplier whose output was sent to
an analogue lock-in amplifier (Stanford Research Systems SR510)
which was connected to a personal computer and controlled using
LabVIEW software.

One output from the lock-in amplifier was used to drive the power
supply for the static-field coils, generating 0.0-0.6 A, corresponding
to a maximum field of 26 mT. A second set of coils was fed with both
fixed and audio frequency currents, the latter under the control of the
lock-in amplifier; the former was manually controlled and provided a
static field of up to 8 mT antiparallel to that produced by the static-
field coils. The amplitude of the 379 Hz audio frequency field
modulation was adjustable in the range 0-2 mT; the resulting
modulations in the exciplex fluorescence were detected as described
above. The net applied field is the sum of the contributions from the
two sets of coils and was typically swept from-3 mT to +23 mT,
with a modulation amplitude of 1.75 mT. The modulation technique
results in a signal that is proportional to the first derivative of the
exciplex fluorescence intensity with respect to the strength of the

applied magnetic field. A modulation depth of 1.75 mT was found
in preliminary studies to optimize the signal-to-noise for field strengths
around the low field region effect without changing the shape of the
signal excessively. Simulations of the field dependence of the singlet
yield were used to test for side effects of modulation. It was found
that moderate amounts of distortion arising from field modulation did
not substantially degrade the quality of the recovered re-encounter
probability distribution (see below).

Magnetic field effects were measured for solutions of 1.0 mM pyrene
(Py-h10 or Py-d10) and 20 mMN,N-dimethylaniline (DMA-h11 or DMA-
d11) in a 1:4 mixture of dimethylformamide (DMF) and tetrahydrofuran
(THF). Samples were sonicated for 30 min to aid dissolution of the
pyrene and to ensure good mixing. Deoxygenation by bubbling with
nitrogen was found to have an insignificant effect on the measured
signal strength and shape. The data presented for the four isotopomeric
mixtures were each averages of three separate measurements on three
3 mL samples. As far as possible, experimental conditions for the
isotopomer combinations were identical; the relative amplitudes of the
four data sets are therefore significant. Chemicals and solvents were
used as received: Py-h10 (Aldrich; 98%), Py-d10 (Cambridge Isotope
Laboratories, Inc; 98%), DMA-h11 (Fluka;>99.5%), DMA-d11 (Cam-
bridge Isotope Laboratories, Inc;>98%), THF (Sigma-Aldrich; 99.5+%,
spectrophotometric grade), and DMF (Sigma-Aldrich;g99.8%, ACS
reagent, spectrophotometric grade).

3. Qualitative Analysis of Magnetic Field Effects

The dependence of the intensity of the modulated fluorescence
on the strength of the applied magnetic field (-3 < B < 23 mT)
is shown in Figure 1 for the four [Py•- DMA •+] isotopomers.
For brevity, we will refer to the four isotopomer combinations
as “hh” ([Py-h10

•- DMA-h11
•+]), “hd” ([Py-h10

•- DMA-d11
•+]),

“dh” ([Py-d10
•- DMA-h11

•+]), and “dd” ([Py-d10
•- DMA-d11

•+]).
The use of field modulation and the consequent detection of
the field derivative of the fluorescence intensity mean that the
data should be antisymmetric aroundB ) 0 mT, as is indeed
observed.

Several features are immediately obvious. All four data sets
have broadly similar amplitudes; all excepthd show an LFE,
the negative-going region between 0 and∼1 mT; and all four
show saturation behavior at magnetic fields greater than about
20 mT. Such observations are common to a great many magnetic
field effect measurements9-16 and have motivated the use of
empirical parameters for their qualitative analysis. The pertinent

Figure 1. First-derivative magnetic field effect on the photochemical reaction of pyrene andN,N-dimethylaniline detected as the intensity of the modulated
fluorescence of the exciplex formed from the singlet [Py•- DMA •+] radical pair. Data are shown for the four isotopomeric radical pairs described in the text:
hh (black),hd (red),dh (green),dd (blue). The panel on the right is an expansion of the low field region. In both panels, the experimental data points (filled
circles) are linked by lines to guide the eye.
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parameters are the LFE depth, defined here as the integral over
the negative-going region of the data around
zero field, and the half-saturation field26 B1/2, defined as the
magnetic field at which the integrated signal reaches exactly
one-half of the integral fromB ) 0 mT toB ) ∞ mT. Table 1
gives the values of these parameters measured from the data in
Figure 1.

In an attempt to shed light on these empirical parameters and
their dependence on the isotopic composition of the two radicals,
we have calculated the magnetic field responses for an ensemble
of 12 737 radical pairs. Each member of the ensemble contained
six spin-1/2 nuclei with distinct hyperfine coupling constants,
three on each radical. For each radical, these were chosen as
follows: (i) the effective hyperfine coupling constant (defined
as in eq 1, below) was chosen at random from a uniform
distribution between 0 and 1.5 mT; (ii) three numbers were
chosen at random from independent Gaussian distributions with
zero mean, and (iii) these three numbers were scaled to give a
set of hyperfine couplings consistent with the effective hyperfine
coupling constant chosen in the first step. This method of
selecting the hyperfine coupling constants ensures that a range
of effective hyperfine couplings is covered and that individual
hyperfine coupling constants are chosen without bias from
among those compatible with the effective hyperfine coupling
constant. After this, magnetic field responses were calculated
for each member of the ensemble using an exponential distribu-
tion of re-encounter lifetimes (the “exponential model”9,18) with
the rate constantk varying over many orders of magnitude.
Comparison of the LFE depth andB1/2, measured from the
calculated magnetic field dependence for each RP, with the
corresponding hyperfine couplings and rate constants allows us
to establish some “rules of thumb”. (See the Supporting
Information for illustrative results.)

Perhaps the most significant result to come from these
computations is that the factors controlling the LFE depth and
B1/2 differ quite markedly between systems where the expo-
nential model rate constantk is smaller than, comparable to, or
greater than the effective hyperfine coupling constants in each
radical defined, following Schulten,30 as

with IiX being the spin quantum number of nuclear spini with
hyperfine coupling constantaiX in radical X.31

For rate constants comparable to the effective hyperfine
couplings constants, i.e., whenk ≈ 5 × 107 s-1, we find a
substantial LFE depth only when the effective hyperfine
coupling constant on one radical is much larger than that for
the other radical. However, we also find the largest variation in
LFE depth under these conditions. In other words, a substantial
LFE depth requires, but is not guaranteed by, the condition that
the two effective hyperfine couplings should differ by more than
a factor of 5. This rule of thumb is consistent with the empirical
observations of Molin and Stass and co-workers13 and quite
different from the behavior in the limit of long lifetimes (i.e.,
when k is much smaller than both of the effective hyperfine
couplings).10,17 We will return to this point below.

The half-saturation fieldB1/2 is sometimes predicted using
the formula

due to Weller26,32(A and B label the two radicals). Analysis of
the calculated magnetic field effects for the ensemble of RPs
described above again shows different behavior depending on
the magnitude of the rate constantk relative to the effective
hyperfine couplings. Equation 2 holds for the most part to within
a factor of 2 at the intermediate rate constants considered here
and may therefore be considered as a second rule of thumb.
However, for faster or slower recombination the agreement is
much less satisfactory (see Supporting Information).

Table 2 presents the three largest hyperfine coupling constants
(aiX) and the effective coupling constants (〈aPy〉 and 〈aDMA〉)
for each of the four radicals.33,34 These values were used to
determine the ratio of effective coupling constants and the value
of B1/2, using eq 2, for each radical pair (Table 1). Comparing
these calculated values with the corresponding experimental
results (also in Table 1), it is clear that the empirical parameters
for the four radical pairs are indeed consistent with the rules of
thumb outlined above. Specifically, the measured LFE depth
increases as the two effective hyperfine couplings become more
disparate and the measuredB1/2 corresponds reasonably well to
the Weller formula.

The set of 12 737 simulated radical pairs also allows us to
verify the theoretical prediction that essentially any radical pair
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hyperfine coupling constants.
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Table 1. Empirical Magnetic Field Effect Parameters and Effective
Hyperfine Coupling Constants for [Py•- DMA•+] Radical Pairs

isotopomer combination hh hd dh dd

experimental LFE deptha 0.15 - 1.54 0.35
experimentalB1/2/mT 6 4 7 4
calculatedb 〈aDMA〉/〈aPy〉 3.2 1.8 12.9 7.3
calculatedb B1/2/mT 5.0 2.8 5.6 3.0

a Arbitrary units. b Calculated using the data in Table 2 and eqs 1
and 2.

〈aX〉 ) x4

3
∑

i

aiX
2 IiX(IiX + 1) (1)

Table 2. Hyperfine Coupling Constants in Py•- and DMA•+

Radicalsa

species X a1X/mT a2X/mT a3X/mT 〈aX〉/mTb

Py-h10
•- c 0.481 (4H) 0.212 (4H) 0.103 (2H) 1.061

Py-d10
•- e 0.074 (4D) 0.033 (4D) 0.016 (2D) 0.267

DMA-h11
•+ d 1.180 (6H) 1.100 (1N) 0.520 (1H) 3.443

DMA-d11
•+ e 0.181 (6D) 1.100 (1N) 0.080 (1D) 1.941

a Hyperfine coupling constants are listed for the three groups of equivalent
nuclei in each radical that have the largest couplings. H, D, and N indicate
1H, 2H, and14N. The number of equivalent nuclei in each group is given
in parentheses.b Effective hyperfine coupling constant calculated
using eq 1.c Hyperfine data taken from ref 33.d Hyperfine data taken from
ref 34. e The2H couplings were obtained usingadeuterated/aprotonated) γD/γH
) 0.1535.

B1/2 ) x3
〈aA〉2 + 〈aB〉2

〈aA〉 + 〈aB〉
(2)
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should have a significant LFE if the recombination and spin
relaxation of the radicals are sufficiently slow.10,17 In contrast
to the result described above fork ≈ 〈aA〉, 〈aB〉, all the radical
pairs studied show substantial LFEs whenk , 〈aA〉, 〈aB〉
irrespective of the relative sizes of the two effective hyperfine
couplings (see Supporting Information). In addition, exponential
model simulations of the magnetic field effects for the four
isotopomeric radical pairs investigated here reveal LFE depths
that mirror 〈aDMA〉/〈aPy〉 when k ≈ 〈aDMA〉, 〈aPy〉 (as found
experimentally) but which are essentially independent of〈aDMA〉
and 〈aPy〉 whenk << 〈aDMA〉, 〈aPy〉.

Returning to Table 1, the agreement between the calculated
effective hyperfine couplings and the empirical field effect
parameters implies that the differences in the observed field
effect curves shown in Figure 1 arise from changes in the spin
dynamics via the isotope effect on the1H/2H hyperfine interac-
tions. However, it cannot be ruled out at this stage that the
observed variations in LFE depth andB1/2 arise from differences
in the recombination rates of the isotopomeric radical pairs due,
for example, to an isotope effect on the electron-transfer rates.
We therefore proceed to a detailed quantitative analysis of the
data in Figure 1.

4. Calculation of Magnetic Field Effects

The RPM provides the mechanistic basis for our quantitative
interpretation of the data in Figure 1. The amplitude of the
modulated exciplex fluorescence is assumed to be proportional
to the first derivative with respect to magnetic field strength of
the S-product yield, dΦS(B)/dB. We further assume that this
product yield may be written in terms of the singlet projection
operator,P̂S, as18

where〈P̂S〉(B,t) is the probability that the radical pair will be
found in a singlet state for a given magnetic field strengthB at
a timet after the instant of radical pair creation, andf(t) is the
probability24 that the radicals re-encounter at timet. A validation
of this approach is presented in the Supporting Information.
Equation 3 treats every singlet state re-encounter as reactive
(i.e., a diffusion controlled reaction) and ignores the possibility
of multiple re-encounters. Thus, after an unreactive (triplet state)
re-encounter the radicals are assumed to separate, never to meet
again. Our aim is to calculate∂〈P̂S〉(B,t)/∂B in order to be able
to solve the integral equation that is the field-derivative of eq
3 to obtain an empirical re-encounter probability distribution
f(t) from the measured fluorescence signals.

We assume that the only significant spin interactions are the
isotropic hyperfine interaction between the electron and nuclear
spins in each radical and the isotropic Zeeman interaction of
the two electron spins with the applied magnetic field. (Aniso-
tropic interactions are efficiently averaged by molecular tum-
bling in solution; spin relaxation is insignificant during the short
radical pair lifetime; g-value differences between the two
radicals and nuclear Zeeman interactions are negligible at the
magnetic field strengths of interest; the electron exchange and
dipolar interactions are assumed to be negligible.) Thus, we write
the spin Hamiltonian of the radical pair (in angular frequency
units) asĤ ) ĤA + ĤB where

in which A and B label the two radicals,ŜX and Î i are the
electron and nuclear spin operators, respectively,γe is the
electron magnetogyric ratio, and the magnetic fieldB is applied
along thez-axis. The hyperfine coupling constantsaiX used in
these calculations are given in Table 2.

Working in the density matrix formalism, we write the singlet
probability as

The density operator evolves from its initial singlet state under
the influence of the Hamiltonian as

whereM is the number of nuclear spin states and the propagator
Û ) e-iĤt. Note that this procedure automatically includes the
interconversion of the singlet state with all three triplet states,
T+1, T0, and T-1. Then, usingP̂S ) (1/4)1̂ - ŜA ‚ ŜB, we can
calculate the spin evolution of the two radicals separately.
Following Till et al.,17 we obtain

in which

The latter expression is simplified by transforming to the
eigenbasis of the Hamiltonian. We define

whereV is the real, orthogonal matrix of eigenvectors ofĤ,
and H̃ is the real, diagonal matrix of eigenvalues ofĤ. Thus,
we may write eq 8 as

whereωmn
X ) Ĥmm

X - Ĥnn
X . It is expedient to evaluate eq 7 via its

Fourier transform

where * denotes convolution and

Now, in order to solve the field derivative of eq 3 forf(t), it
is imperative that we evaluate the singlet probability〈P̂S〉
sufficiently accurately, which in practice means that we must
include a realistic number of magnetic nuclei. However, as will
be seen shortly, sufficient accuracy can be obtained without
calculating the exact spin evolution in what will be a large spin
system. We employ a frequency-domain binning procedure to

ΦS(B) ) ∫0

∞
〈P̂S〉(B,t) f(t) dt (3)

ĤX ) ∑
i

aiXŜX ‚ Î i - γeBŜXz (4)

〈P̂S〉(B,t) ) Tr[F̂(B,t)P̂S] (5)

F̂(B,t) ) ÛF̂(0)Û† ) 1
M

ÛP̂SÛ† (6)

〈P̂S〉(B,t) )
1

4
+

1

M
∑

p,q)x,y,z

Rpq
A (t) Rpq

B (t) (7)

Rpq
X (t) ) Tr[ŜXpe

-iĤ Xt ŜXqe
iĤ Xt] (8)

H̃ ) VTĤV andS̃Xp ) VTŜXpV (9)

Rpq
X (t) ) Tr[S̃Xpe

-iH̃ Xt S̃Xqe
iH̃ Xt] )

∑
m,n

exp(iωmn
Xt )(S̃Xp)mn(S̃Xq)nm (10)

〈P̂S〉(B,ω) )
1

4
δ(ω) +

1

M
∑

p,q)x,y,z

Rpq
A (ω) / Rpq

B (ω) (11)

Rpq
X (ω) ) ∑

m,n

(S̃Xp)mn(S̃Xq)nm δ(ω + ωmn
X ) (12)
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allow incorporation of sufficient magnetic nuclei using the
available computational resources.

To begin, notice that eqs 11 and 12 give the singlet probability
as a sum of delta functions with various frequencies (ωk) and
amplitudes (Rk):

Transforming eq 3 into the frequency domain therefore gives

whereF(ω) is the Fourier transform off(t).
We proceed by discretizing eq 14 at a set of field strengths

Bi and frequenciesωj. Provided that we have taken enough
frequency samples,F(ω) will be a piecewise constant around
each sampleωj. Therefore we write

where the vector of singlet yields has elementssi ) ΦS(Bi), the
singlet probability becomes a matrix with elementsAij )
∑k:ωk≈ωj 〈P̂S〉(Bi, ωk), and the Fourier transform of the re-
encounter probability is sampled to give a vector with elements
Fj ) F(ωj). The field strengths are chosen to cover the range
of the experimental data which, for ease of analysis, are
interpolated linearly, without smoothing, at a resolution of 0.1
mT.

An important consequence of this frequency domain binning
procedure is that we need no longer evaluate theRpq

X (ω)
exactly. If we bin theRpq

X (ω) in the frequency domain before
performing the convolution in eq 11, we arrive much more
rapidly at the desired singlet probability matrixA.

The experimental data are proportional to the derivative of
the singlet yield with respect to the magnetic field strength. We
differentiate eq 15 approximately by premultiplying by a
differentiation matrixD giving

In this work, D is a fourth-order finite differences matrix,
calculated using Fornberg’s method.35 Appropriate one-sided
finite difference approximations are used for the terminal points,
making use of the symmetryΦS(B) ) ΦS(-B).

Finally, to allow us to use our physical intuition in respect
of the time domain re-encounter probabilityf, we convertF
back into the time domain using the appropriate inverse discrete
Fourier transform, shown here by the matrixF -1,

In practice, the matrixR is evaluated as a column-wise fast
Fourier transform ofDA, while a row-wise FFT would suffice
to convertF into f.

In preliminary work, we calculated the spin evolution in the
[Py•- DMA •+] radical pair using a variety of frequency domain
binning resolutions and included different numbers of hyperfine
coupling constants. Each case was evaluated by plotting the
singlet yield derivative determined usingf(t) ) k exp(-kt) for
the re-encounter probability distribution.9 It was found that the

three groups of equivalent nuclei with the largest hyperfine
couplings on each radical (Table 2) could be included within a
reasonable computation time. In order to obtain singlet-yield
derivative curves that were converged to plotting accuracy for
magnetic fields in the range 0-20 mT we found that the number
of bins should not be less than∼25 000. In the following, 25 001
bins were used so as to have one centered at zero frequency.
Although this calculation of the matrixR is lengthy, it need
only be performed once for any given radical pair and set of
magnetic field values.

Thus,R has dimension 201× 25 001 corresponding, via eq
17, to 201 data points and 25 001 samples off(t), which are
evenly distributed over timest ) 0 f 5000π ns. However, in
work with both synthetic and experimental data, we found no
reasonable solution forf(t) that had significant amplitude beyond
100 ns. In order to improve the speed of data analysis, we
assume thatf(t) ) 0 ∀ t g 80π ns. When applied to eq 17, this
assumption amounts to truncatingf after 400 elements and
deleting all but the first 400 columns ofR. Results obtained
using the regularization methods described below with both the
full R and the reducedR are almost indistinguishable. The
reducedR has consequently been used in all the reconstructions
presented below.

5. Regularization

From the form of eq 17 it would appear that we are very
near to finding the empirical re-encounter probability distribution
that we seek. However, there are 25 001 (or 400 in the simplified
case) values off(t) in f which must be determined from 201
experimental data points ins′. Such underdetermined problems
are very common, and linear solvers (e.g., the “backslash” solver
built into Matlab36) are designed to find an optimal solution in
a least-squares sense, namely

Unfortunately, when this solutionfLS is examined it is found to
be both highly oscillatory and dominated by numerical noise.
The problem is not just underdetermined; it is ill-posed. In other
words, the recovered solutionsfLS are very sensitive to errors
in the datas′ and in the matrixR, to the extent that accumulated
rounding errors are enough to render the recoveredfLS meaning-
less. The ill-posed nature of the problem manifests itself in other
ways too. For example, we initially attempted to invert the
continuous form of this problem, the derivative of eq 3, by
model fitting. Having chosen a trial functional form forf(t),
we attempted to fit a set of parameters. Yet, because the problem
is ill-posed, there were a great many local minima among the
parameters, and it proved impossible to optimize the model
properly.

Fortunately, such ill-posed, underdetermined problems occur
frequently throughout the physical sciences, and powerful
“regularization methods” have been developed for their solu-
tion.37 Here we use two such approaches which were first tested
using synthetic data (see Supporting Information) and which
we now apply to the experimentally determined magnetic field
effect data.

(35) Fornberg, B.Math. Comput.1988, 51, 699-706.

(36) Matlab, R2006a; The Mathworks, Inc.
(37) Hansen, P. C.Rank-deficient and discrete ill-posed problems: numerical

aspects of linear inVersion. SIAM: 1998.

〈P̂S〉(B,ω) ) ∑
k

Rk(B) δ(ω - ωk(B)) (13)

ΦS(B) ) ∫0

∞
[∑

k

Rk(B)δ(ω - ωk(B))]F(ω) dω (14)

s ) AF (15)

s′ ) Ds ) DAF (16)

s′ ) [DAF ][F -1F] ) [DAF ]f ) Rf (17)

fLS ) argmin
f | Rf - s′ |2

(18)

Radical Re-encounter Probability Distributions A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 129, NO. 21, 2007 6751



5.1. Tikhonov Regularization. Tikhonov regularization is
one of the simplest and best known linear regularization
methods.38,39 We introduce two measures of the quality of a

solution: the residual norm|Rf - s′ |2
measures the failure

of the solution to reproduce the data, while the solution norm

| Lf |2
measures the deviation of the solution from some

expected form (typically based on physical insight). The
Tikhonov solution is

The regularization parameterλ allows us to choose how rigidly
to impose our prior knowledge on the solution. A very large
value of λ produces a solution which has little connection to
the data but which will conform to our prior knowledge, while
a very small value ofλ will not produce sufficient damping of
the troublesome oscillatory components and will therefore give
way to noisy solutions. In the limitλ f 0, eq 19 tends to eq 18
and the Tikhonov solutionfT tends to the least-squares solution
fLS. We choose an optimal value forλ using the “L-curve”
method37,40,41(see Supporting Information).

The regularization matrixL is chosen to select the unwanted
components in a solution, which are then penalized by the
second term in eq 19. In this work, we have used eitherL equal
to the identity matrix, which tends to reduce the recoveredf(t)
to zero wherever possible, orL equal to a second derivative
finite-differences matrixD2, which tends to produce smoothf(t)
by penalizing regions with large changes in gradient. Both
choices penalize the highly oscillatory behavior seen in the
unregularized solutions.

In addition to these preferences for nonoscillatory solutions,
we know that f(t) must be non-negative because it is a
probability distribution. It would seem sensible to solve eq 19
subject to the constraint thatfT g 0. It may be shown37 that eq
19 can be solved by finding the constrained least-squares
solution to the normal equation:

In the following work, we solved the unconstrained problem
in eq 19 using the tikhonov.m code in Hansen’s Matlab
toolbox.42 For the constrained problem in eq 20 we used the
fast non-negative least-squares (FNNLS) algorithm proposed
by Bro and Jong,43 which is a more efficient implementation
of the classic NNLS algorithm of Lawson and Hansen.44 Again,
calculations were performed in Matlab.

5.2. Maximum Entropy Regularization. An alternative,
nonlinear, Bayesian regularization method is known as the
maximum entropy method45-49 (often abbreviated as MEM or

MaxEnt). In its classic form, the algorithm aims to recover, from
among all the solutions consistent with the experimental data,
the most probable or maximum likelihood solutionfME. As
before, consistency means thatRfME ≈ s′ as measured by an
appropriate statistic. In practice, this maximum likelihood
solution is determined by maximizing the entropy

subject to a chi-squared test

where b is a baseline parameter,σ is (an estimate of) the
standard deviation of the experimental noise, andøtarget

2 is
equal to the number of data points ins′ (201 here).45,49

In this formulation, the baseline factorb is the principal
regularization variable. If the data do not constrain the solution
at a particular point, then the maximum entropy method will
choose f ME

/ ) be-1 for the re-encounter probability there.
When the solution is constrained by the data,b governs the
relative penalty for increasingf at that point. For a re-encounter
probability value (fME)k > be-1, the entropy penalty will increase
more rapidly the smallerb is. Thus, smaller values ofb will
pull the baseline down more aggressively and give sharper
peaks, while larger values ofb will result in broader peaks and
a higher baseline. The choice of the optimal value ofb is
discussed in the Supporting Information.

In this work, we use an algorithm described by Skilling and
Bryan50 to solve the nonlinear constrained optimization problem
defined by eqs 17, 21, and 22. This algorithm uses a suitable
subspace of search directions based on the entropyS and the
constraintø2 with a metric for optimization based on the entropy
S. All calculations were performed in Matlab, based on the
original Fortran code kindly supplied by G. J. Daniell (Univer-
sity of Southampton).

6. Quantitative Analysis of Magnetic Field Effects

Having established that the two regularization methods are
able to recover the re-encounter probabilityf(t) from a variety
of synthetic data (see Supporting Information), we proceed to
apply them to the experimental data shown in Figure 1. In both
cases, the regularization parameters were chosen after a careful
evaluation using the synthetic data (see Supporting Information).

Tikhonov regularization was applied to the data for each
isotopomer combination taken separately. We obtained the most
satisfactory results by usingL ) D2 for the solution seminorm,
which discourages oscillations in the recoveredf(t), by con-
strainingf(t) g 0 using the FNNLS algorithm and by choosing
λ using the L-curve method. The results are given in Figure
2A and discussed below.

Maximum entropy regularization was also applied to each
isotopomer combination taken separately. Figure 2B shows the
recoveredf(t), which is discussed below. One difference between

(38) Tihonov, A. N.SoViet Math. Dokl.1963, 4, 1035-1038.
(39) Tikhonov, A. N.; Arsenin, V. Y.Solutions of ill-posed problems. V. H.

Winston & Sons: Washington, D.C., 1977.
(40) Hansen, P. C.SIAM ReView 1992, 34, 561-580.
(41) Hansen, P. C.; O’Leary, D. P.SIAM J. Sci. Comput.1993, 14, 1487-

1503.
(42) Hansen, P. C. Regularization tools: a Matlab package for analysis and

solution of discrete ill-posed problems.
(43) Bro, R.; de Jong, S.J. Chemomet.1997, 11, 393-401.
(44) Lawson, C. L.; Hanson, R. J.SolVing least squares problems; Prentice Hall

Inc.: Englewood Cliffs, NJ, 1974.
(45) Gull, S. F.; Daniell, G. J.Nature1978, 272, 686-690.
(46) Jaynes, E. T.Phys. ReV. 1957, 106, 620-630.

(47) Jaynes, E. T.Phys. ReV. 1957, 108, 171-190.
(48) Jaynes, E. T. InMaximum Entropy Formalism Conference; Levine, R. D.,

Tribus, M., Eds.; MIT Press: 1978; pp 15-118.
(49) Buck, B.; Macaulay, V. A.Maximum Entropy in Action; Oxford University

Press: Oxford, 1991.
(50) Skilling, J.; Bryan, R. K.Mon. Not. R. Astron. Soc.1984, 211, 111-124.

fT ) argmin
f | Rf - s′ |2

+ λ| Lf |2
(19)

[R†R + λ2L†L ]fT ) R†s′ :fT g 0 (20)

S) -∑
k

((fME)k

b ) ln((fME)k

b ) (21)

ø2 ) ∑
k

[(RfME)k - s′k]
2/σ 2 ) øtarget

2 (22)
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the tests using synthetic data and the analysis of the experimental
data was the choice of noise standard deviation estimateσ. In
order to obtain convergence with the experimental data, it was
necessary to increaseσ slightly from the value estimated by
inspection of the raw data at fields higher than the saturation
value. This discrepancy might arise because of the use of a lock-
in amplifier, which causes the noise to be correlated somewhat
between neighboring data points, something that is not included
in our maximum entropy treatment. It could also arise from the
neglect of some of the small hyperfine couplings or other
interactions. Nevertheless, evaluation with synthetic data shows
that increasing the noise estimate slightly has only a small effect
on the recoveredf(t). Hence, this point should not concern us
further.

The f(t) distributions for the four isotopomer combinations
(Figure 2A and B) are strikingly similar to one another for values
of t greater than 2 ns. To test whether they are truly equivalent,
we attempted to recover a singlef(t) by processing all four
isotopomer combination data sets simultaneously. Very satisfac-
tory fits to the data were obtained by allowing a modest constant
scaling of each data set relative tohh. Physically, this
corresponds to dropping our assumption of exactly identical
experimental conditions (e.g., concentrations, light intensity,

detector performance, sample temperature) for the four isoto-
pomer combinations. The combined analysis was accomplished
by wrapping an outer nonlinear least-squares minimization
routine around the Tikhonov regularization code. In the outer
routine, the relative intensities of the data sets are varied in order
to minimize the residual norm. This process was repeated for
each value ofλ in order to construct an L-curve from which
the optimalλ was obtained, giving the result presented in Figure
2C.

Before interpreting the re-encounter probability distributions
in Figure 2, two technical points need to be mentioned. First,
we observed that the data for thedd isotopomer were somewhat
more difficult to analyze than those from the other isotopomer
combinations. This is reflected in the slightly higher maximum
entropy noise estimate required for thedd analysis in Figure
2B. During our evaluation with synthetic data, it was also found
to be more difficult to reconstructf(t) from thedd isotopomer
combination. Since these difficulties arise even with synthetic
data, they are not caused by deficiencies in the theoretical model
or by experimental difficulties. Instead, it seems that the
particular hyperfine coupling constants in thedd isotopomer
combination create an inversion problem that is even more
severely ill-posed than those for the other isotopomer combina-
tions. Second, there are noticeable residual oscillations in the
f(t) functions obtained by all three methods (Figure 2). These
are almost certainly spurious since their positions and amplitudes
depend on the choice of regularization parameter (b for
maximum entropy andλ for Tikhonov regularization). They
demonstrate one of the fundamental tendencies of ill-posed
problems, which tend to introduce unphysical oscillations into
the solution when even very tiny amounts of noise are present
in the data.37 Thus, attempts to solve eq 18 in a least-squares
sense (not shown) gave “solutions” with such wild oscillations
that any physically meaningful information on the re-encounter
probability was completely obscured. Regularization methods
dramatically improve this situation and allow many of the
oscillations to be eliminated. Nevertheless, there are fundamental
limits to the information contained in experimental data such
as those in Figure 2. We should not expect to achieve a perfect
suppression of oscillatory artifacts in an ill-posed problem.

7. Discussion

The re-encounter probability distributionsf(t) for the four
isotopomer combinations are remarkably similar to one another
for times longer than∼2 ns. This can be seen in Figure 2A and
B and is perhaps most powerfully demonstrated by Figure 2C,
where a singlef(t) was recovered from data for all four
isotopomeric reactions simultaneously. The close fit to the
experimental data (see Figure 3 and the Supporting Information)
provides direct evidence that diffusion and reaction kinetics in
these aromatic radical ion pairs are changed very little by
perdeuteration. Isotopic substitution is clearly an effective means
of modifying the hyperfine interactions and hence the extent
and efficiency of ST T interconversion in a radical pair reaction
without disturbing other parameters; this bodes well for future
studies.

We also note the strong resemblance of thef(t) distributions
recovered from the Tikhonov (Figure 2A) and maximum entropy
(Figure 2B) methods. The former is a linear regularization
method, while the latter is nonlinear. That these two disparate

Figure 2. Best recoveredf(t) for (A) Tikhonov regularization and (B)
maximum entropy regularization for each of the four isotopomer combina-
tions. (C) Tikhonov regularization recovery of a singlef(t) to fit all four
isotopomer combinations simultaneously. For (C), the experimental data
for each isotopomer combination were scaled as part of the regularization
procedure. The optimal scaling factors were as follows:hh 1.00 (i.e., not
rescaled),hd 0.73,dh 1.08,dd 0.59. (C) also contains the best fit of the
recoveredf(t) at t > 2 ns to an exponential (red,k ) 5.8× 108 s-1) and to
the diffusion model (blue,f(t) ∝ t-3/2).19,20 In all cases, the fits to the
experimental data were exemplary. The fits for case (A) are shown in Figure
3. (See Supporting Information for the remaining fits to the data, selected
Tikhonov L-curves, and further information.)
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techniques yield the same re-encounter probability distributions
(for t > 2 ns) significantly strengthens our confidence that the
f(t) shown above are to be believed. It seems quite implausible
that two independent methods should both fail in the same
manner. This confidence is increased still further by the robust
behavior of the two approaches when working with synthetic
data.

Although the re-encounter probabilities obtained from Tikhonov
and maximum entropy regularization are rather similar, there
are substantial differences in the first 2 ns (not shown in Figure
2). The Tikhonovf(t) is essentially linear int for t < 2 ns with
a large negative gradient. Thef(t) from maximum entropy,
however, tends to the value of the baseline parameterb ast f
0 ns. This contrasting behavior is expected iff(t < 2 ns) is not
constrained by the experimental data; i.e., if the re-encounters
that occur during the first 2 ns make little contribution to
dΦS(B)/dB. As discussed in connection with eqs 19 and 20, the
use ofL ) D2 in Tikhonov regularization disfavors oscillations
and so will produce anf(t) with a vanishing second derivative;
similarly, in the absence of a significantø2 constraint, the form
of the expression forS (eq 21) causes the maximum entropy
reconstruction to be pulled strongly toward the value of the
baseline parameterb. This situation is consistent with the
contribution to the singlet yield during the period 0< t < 2 ns
being independent of the magnetic field strength to a good
approximation. Thus, the data, which are proportional to
dΦS(B)/dB ) 0, do not constrainf(t) at these short times. In
the Supporting Information, Figure S6 shows a plot of the
standard deviation of the singlet probability over the 201
different field strengths which supports this conclusion.

This argument sheds light on the interpretation of thef(t)
distributions recovered from the magnetic field effect data. The
results in Figure 2 do not represent the total distributions of
re-encounter probabilities, but rather the distributions of the re-
encountersthat are important for the formation of a magnetic
field effect. It is evident from Figure 2 that these re-encounters
occur principally between about 2 and 10 ns. The large number
of re-encounters that are expected to take place during the first
2 ns are unimportant because 2 ns is too short a time to allow
significant spin evolution of the radical pair under the Zeeman
interaction. For applied magnetic fields in the range 0< B <
20 mT, the electron Zeeman interaction has a maximum
frequency of∼560 MHz, whose reciprocal is∼2 ns. Since
dΦS(B)/dB is expected to have its maximum value atB ≈

B1/2 ≈ 5 mT ≈ 140 MHz, we can anticipate that the optimum
time for re-encounters will be approximately (1/140) MHz≈ 7
ns, as found in the recoveredf(t) functions in Figure 2.

We may speculate on a further aspect of the interpretation of
the f(t) distributions in Figure 2. Hitherto we have chosen to
ignore the exchange interaction between the two radicals,
certainly a good approximation when the radical-radical
separation is large (>1.0-1.5 nm). However, when the radicals
are close enough that the exchange dominates the hyperfine and
Zeeman interactions, all ST T interconversion ceases and the
pair is locked into an S or a T eigenstate. We may therefore
think of an “exchange zone” of radical-radical separations
(extending out to 1.0-1.5 nm) in which there is no dependence
of the radical pair spin evolution on the applied magnetic field.
Thus, during a diffusive trajectory, ST T interconversion can
be considered to start only when the radicals leave the exchange
zone and to stop as soon as they re-enter it. Any radical pair
that re-enters in an S state remains in an S state until it either
recombines or diffuses apart again. Thus, the recoveredf(t) may
be regarded as giving information on the trajectories that are
important for the generation of the magnetic field effect, i.e.,
those that spend 2-10 ns outside the exchange zone. The fact
that all the f(t) distributions in Figure 2 have a very low
amplitude beyond 10 ns simply reflects the low probability that
the radicals return to the exchange zone after such a relatively
long time.

There are clear parallels here with the production of electron
and nuclear magnetic polarizations (CIDEP and CIDNP) by the
RPM19,20,23which also require the radicals to undergo a period
of exchange-free diffusion. However, there are sufficient dif-
ferences between the origins of high-field CIDEP/CIDNP and
the LFE that it cannot automatically be assumed that the
dependence on the magnetic properties of the radicals and their
diffusive trajectories will be identical. For example, the exchange
interaction plays different roles in the generation of CIDEP and
of MFEs: without exchange there can be no electron spin
polarization. MFEs, by contrast, are clearly influenced by
exchange interactions (see, e.g., Supporting Information, section
7), but they do not disappear in the absence of exchange.
Another qualitative difference is that without spin-selective
reactivity there can be no MFE, while a geminate spin-correlated
radical pair can lead to electron spin polarization even if the
radicals are infinitely long-lived. Finally, there are differences
in the importance of the various magnetic interactions within
the radicals. Assuming the two radicals have identicalg-values
(as here), the parameter that controls the frequency of singlet-
triplet interconversion at high field, and therefore determines
the size and properties of the CIDEP, is the difference in EPR
frequencies of the two radicals.19,20,23This parameter depends
exclusively on the hyperfine coupling constants when∆g ) 0.
For low-field MFEs, the situation is more complex. The
corresponding singlet-triplet mixing frequency depends in a
much more complicated way on the hyperfine coupling con-
stants, as well as on the electron Zeeman interaction. In light
of this, it is not clear that the time scale of re-encounters that
are important for high field CIDEP/CIDNP should be identical
to that determined here for the LFE or MFEs. Further work
will be needed to clarify this matter.

Finally, we observe that the decayingf(t) distribution (t >
2 ns) in Figure 2 resembles that assumed in the traditional

Figure 3. Fits (lines) to the experimental data (dots) for Tikhonov
regularization corresponding to the recoveredf(t) in Figure 2A. Optimal
values of the regularization parameterλ, chosen according to the L-curve
method, are given in the legend for each isotopomer combination.
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exponential model9 (with a best-fit rate constantk ) 5.8 ×
108 s-1; see Figure 2C). The agreement with the diffusion
model20 is less satisfactory principally because the predicted
t-3/2 dependence seriously overestimates the extent of the “tail”
of the f(t) distribution after about 6 ns (also shown in Figure
2C). The failure of the diffusion model here is very likely due
to the influence on the motion of the radical ions of their mutual
Coulombic attraction (the Onsager distance in the DMF/THF
solvent mixture is approximately 4 nm). The exponential model,
in spite of its apparent crudity, evidently captures the general
behavior of the re-encounters on which the magnetic field effects
depend. Our data therefore support the use of such empirical
diffusion models for the calculation of magnetic field
effects.
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